Quantcast
Channel: MAQUINARIA AUXILIAR Y EQUIPOS DE ELEVACIÓN – Procedimientos de #construcción
Viewing all 155 articles
Browse latest View live

Rendimiento de un motor térmico. Problema resuelto.

$
0
0

motoranimation1hk5Aprende a calcular el rendimiento de un motor térmico a partir de su velocidad de régimen y su par motor conociendo las características de su combustible. Evalúa cómo influye en el gasto que el motor sea de cuatro tiempos o de dos tiempos en idénticas condiciones de funcionamiento.

El enunciado del problema es el siguiente: Un motor de cuatro tiempos consume 8,47 litros a la hora de un combustible de 0,85 kg/dm3 de densidad y 41000 kJ/kg de poder calorífico. Entrega un par de 78,3 Nm a 3000 rpm. Se pide:

  1.  Calcular la masa de combustible consumida en cada ciclo
  2.  Calcular el rendimiento del motor
  3.  ¿Qué consecuencias tendría en el consumo/ciclo si el motor fuera de dos tiempos?

Para ello te dejo un vídeo de Javier Luque que espero te resulte de interés.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.


El polipasto o aparejo

$
0
0
Aparejo factorial

Aparejo factorial

El polipasto o aparejo es un sistema de poleas móviles, unidas con una o varias poleas fijas. En el caso ideal la ganancia o ventaja mecánica es igual al número de segmentos de cuerda que sostienen la carga que se quiere mover, excluido el segmento sobre el que se aplica la fuerza de entrada. El rozamiento reduce la ganancia mecánica real, y suele limitar a cuatro el número de poleas. El aparejo puede ser factorial, potencial y diferencial.

Ventaja mecánica de distintos aparejos tipo potencial

Ventaja mecánica de distintos aparejos tipo potencial

  • Aparejo factorial: se combinan igual número de poleas fijas y móviles; de donde se deduce que el esfuerzo necesario es igual a la resistencia dividida por el número total de poleas de que está construido el aparejo.
  • Aparejo potencial: se combina un número cualquiera de poleas móviles con una fija. De acuerdo con la figura, la primera polea móvil partiendo de abajo hacia arriba, reduce la fuerza necesaria para equilibrar la resistencia a la mitad de esta, la segunda polea reduce esta mitad a la cuarta parte, la tercera ala octava y así sucesivamente.
  • Aparejo diferencial: consta de una doble polea fija, de radios desiguales y una polea móvil, poleas que se encuentran enlazadas por una cadena sin fin o cerrada. Cuando la doble polea fija, gira en el sentido de las agujas de un reloj, la polea fija de menor radio da cordel y la más grande toma; como al dar una vuelta la polea pequeña da menos de lo que la grande toma, la consecuencia es que P = Q(R-r)/2R.
Aparejo diferencial

Aparejo diferencial

Estos aparatos se accionan mecánicamente, en muchas ocasiones con aire comprimido como elemento motor si las potencias son bajas. En estos casos es necesario dotar a los mecanismos de un freno de cinta para evitar el retroceso de la carga. En las figuras que siguen aparecen algunos ejemplos.

Polipasto eléctrico

Polipasto eléctrico

 

Detalle de aparejo de grúa móvil

Detalle de aparejo de grúa móvil

Os dejo a continuación un vídeo explicativo de los polipastos.

Referencia:

YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Maquinaria auxiliar y equipos de elevación. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 200 pp.

 

 

 

Tendencia al gigantismo en las máquinas

$
0
0

La maquinaria ha cambiado rápidamente con las innovaciones tecnológicas. Se ha derivado hacia la especialización, evolucionando unas hacia el gigantismo para obtener grandes producciones, mientras otras se han convertido en diminutas y versátiles. En otros casos se ha buscado la polivalencia del trabajo en equipos pequeños y medianos. Los medios informáticos han auxiliado y mejorado los sistemas de los equipos. La maquinaria va siendo cada vez más fiable, segura y cómoda para el operador, facilitándole las labores de conservación. En general se observa una preocupación creciente por la seguridad, el medio ambiente y la calidad.

Como muestra de la tendencia al gigantismo en la maquinaria de ingeniería civil y minería, os paso un pequeño documental donde se muestran brevemente estas megamáquinas. Espero que os guste.

 Os paso ejemplos de máquinas gigantes. La grúa torre Kroll K-10000 es la más grande del mundo. Fue fabricada por la marca danesa Kroll y es capaz de levantar pesos de 132 toneladas de carga máxima y 91 toneladas a una distancia máxima de 100 metros.

El Bulldozer D575A-3SD tiene casi 5 metros de altura y fue diseñado y fabricado en Japón. Esta potente máquina rebasa los 12 m de ancho y puede mover más de 215 toneladasde una sola vez.

La Bagger 288, es una excavadora giratoria empleada fundamentalmente en trabajos de minería. Una vez entró en funcionamiento se convirtió en el vehículo de carga sobre tierra firme más grande del mundo. Mide 220 metros de largo, 96 de alto y 46 de ancho.

El BelAZ 75710 pesa 810 toneladas, 210 toneladas más que el Caterpillar, y tiene una capacidad de carga de 450 toneladas. Cuenta con dos motores turbodiésel de 16 cilindros asociados que generan 4.600 caballos con un par máximo de 18.626 Nm.

La motoniveladora ACCO se considera la mayor motoniveladora del mundo. Esta máquina pesa unas 200 toneladas y contiene dos motores Caterpillar, uno de 1000 CV en la parte trasera y otro de 700 CV en la parte delantera, la cual pertenece a la cabeza tractora de una mototrailla Caterpillar 657. La hoja o cuchilla posee una longitud de 10 metros.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

La bomba en la estación de bombeo

$
0
0

Las estaciones de bombeo son estructuras destinadas a elevar un fluido desde un nivel energético inicial a un nivel energético mayor. Su uso es muy extendido en los varios campos de la ingeniería, así, se utilizan en:

  • Redes de abastecimiento de agua potable, donde su uso es casi obligatorio, salvo en situaciones de centros poblados próximos de cadenas montañosas, con manantiales situados a una cota mayor;
  • Red de alcantarillado, cuando los centros poblados se sitúan en zonas muy planas, para evitar que las alcantarillas estén a profundidades mayores a los 4 – 5 m;
  • Sistema de riego, en este caso son imprescindibles si el riego es con agua de pozos no artesianos;
  • Sistema de drenaje, cuando el terreno a drenar tiene una cota inferior al recipiente de las aguas drenadas;
  • En muchas plantas de tratamiento tanto de agua potable como de aguas servidas, cuando no puede disponerse de desniveles suficientes en el terreno;
  • Un gran número de plantas industriales.

Las estaciones de bombeo tienen por elemento principal a los grupos de bombas. El papel que juegan las mismas es el de proporcionar caudal y presión al conjunto del sistema y es muy importante conocer cómo van a comportarse en el mismo en base a sus curvas motrices. A continuación os dejo un Polimedia de la profesora Petra Amparo López Jimenez donde se describe cómo se llega a las curvas motrices de las bombas desde sus características geométricas y se introduce la teoría que explica el comportamiento de las mismas a partir del conocimiento de sus datos básicos de geometría y velocidad.

Las bombas hidráulicas tienen unas curvas motrices características que representan el caudal y presión que pueden proporcionar en una instalación. La instalación de dichas bombas en unas condiciones u otras, su asociación en serie o paralelo, su arranque o condiciones de cebado, determinarán el caudal, presión, potencia absorbida y posibles aplicaciones en las instalaciones concretas. En el siguiente vídeo se describen estos aspectos de las estaciones de bombeo.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Electrobombas sumergibles para pozos profundos

$
0
0
Electrobomba sumergible para pozos (McNaughton)

Electrobomba sumergible para pozos (McNaughton)

Son bombas con rodetes radiales o semiaxiales de múltiples etapas superpuestas diseñadas para bombear desde pozos profundos (hasta 350 m) y de pequeña sección (4” a 14”). Se pueden impulsar caudales de hasta 450 m3/h. Constan de un motor eléctrico del tipo “jaula de ardilla” de 2 a 250 kW, provisto de estator con bobinado de conducciones especialmente aislado con PVC y compensador de dilataciones y contracciones por cambios de temperatura.

El factor más desfavorable para este tipo de bombas es la presencia de arena (daños a partir de más de 25 g de arena por m3). Análogamente hay que determinar la composición del agua, su pH, el contenido de CO2, etc. Estas circunstancias son importantes en el momento de elegir la bomba adecuada a la presencia de estos componentes corrosivos o abrasivos.

No son imprescindibles los cuidados de mantenimiento, no se producen averías por heladas, ni ocurren problemas de aspiración ni de ruido; estas circunstancias justifican la economía de su uso, siempre que los grupos utilizados estén bien proyectados y sean resistentes y equilibrados. Sin embargo, en caso de avería del motor se debe extraer toda la columna.

Os dejo un par de vídeos sobre la instalación de este tipo de bombas.

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Motores endotérmicos o de combustión interna

$
0
0

Un motor es la parte de una máquina capaz de hacer funcionar algo transformando algún tipo de energía (eléctrica, de combustibles fósiles, etc.), en energía mecánica capaz de realizar un trabajo. En los automóviles este efecto es una fuerza que produce el movimiento. De hecho, gran parte de la maquinaria empleada en ingeniería civil utiliza motores de combustión interna para su funcionamiento, especialmente motores diesel turboalimentados. En este post vamos a repasar muy brevemente este tipo de motores y dejaremos alguna animación para su mejor comprensión. En otros posts profundizaremos en la explicación y funcionamiento más detallado.

Los motores térmicos producen trabajo aprovechando la energía de los cuerpos que se encuentran a una temperatura elevada. A este tipo pertenecen los motores de combustión, en el que el medio de trabajo o sustancia a la que se le va a extraer la energía térmica ha adquirido su alta temperatura aprovechando el calor desprendido de una combustión. En la Tabla 1  se clasifican los motores térmicos de combustión.

    MOTORES TÉRMICOS     Combustión interna     Combustión externa
  Alternativos De explosiónDiesel  Máquina de vapor
  Rotativos De explosiónTurbina de gas  Turbina de vapor

Tabla 1.- Clasificación de los motores térmicos de combustión.

Los motores endotérmicos o de combustión interna aprovechan la energía generada por la expansión de un combustible en el interior de una cámara transformándola en movimiento. Si bien existen antecedentes a mediados del siglo XVII con Huygens y Papin con motores de pólvora, no fue hasta 1794 en el que el inglés Robert Street patentó el primer motor alternativo de combustión interna que utilizaba una mezcla de aire y combustible gaseoso. El primer motor de este tipo capaz de soportar una utilización continuada en el ámbito industrial fue construido por el francés Etienne Lenoir en 1859, siendo mejorado notablemente por el alemán Nikolaus Otto en 1876 con su motor de cuatro tiempos.

El primer motor de gasolina fue diseñado y patentado por el ingeniero alemán Gottlieb Daimler en 1885, y en 1892 su compatriota Rudolf Diesel patenta el primer motor de encendido de compresión.

Los motores de combustión interna pueden clasificarse atendiendo a diferentes conceptos:

  • Por la forma de iniciar la combustión: Motores Otto (motores de explosión: encendido por chispa) y motores Diesel (encendido por compresión).
  • Por el ciclo de trabajo: Motores de 4 tiempos y motores de 2 tiempos.
  • Por el movimiento del pistón: Motores de pistón alternativo y motores de pistón rotativo.

El motor de combustión interna alternativo es una máquina térmica de desplazamiento positivo que permite la transformación de energía térmica obtenida mediante un proceso de combustión en el propio fluido operante, en energía mecánica mediante el movimiento lineal de un émbolo. El fluido comprime y expande un volumen cerrado deformable formado por el cilindro, el pistón y la culata.

Motor de explosión de cuatro tiempos

Dentro de los motores de combustión interna rotativos, el motor Wankel, cuya patente data de 1936, se diferencia enormemente de los motores convencionales. Conserva el producto, la compresión, la potencia y el ciclo familiar del extractor, pero utiliza, en vez de un pistón, de un cilindro y de válvulas mecánicas, un rotor triangular que gira alrededor del excéntrico. Otro tipo son las turbinas de gas, que son motores  compuestos por uno o varios compresores, una o varias cámaras de combustión dispuestas anularmente alrededor del eje de la máquina, una turbina de uno o varios escalones que acciona el compresor y una turbina de potencia donde el trabajo producido se puede utilizar para generar energía eléctrica, mover la hélice de una aeronave, etc. Además lleva un pequeño motor de arranque y un sistema de inyección del combustible en la cámara de combustión y de regulación del régimen de la máquina.

Motor Wankel

Os paso un vídeo explicativo de la academia SERFA al respecto.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Tipología de las estaciones de bombeo

$
0
0

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Motores térmicos de cuatro tiempos

$
0
0

Los cuatro tiempos del motor. Wikipedia

El motor de 4 tiempos es el que se utilizan mayoritariamente en automoción. Mediante un sistema de transformación biela-manivela, este movimiento se transforma en el giro de una manivela o cigüeñal. Puede ser un motor de combustión interna alternativo tanto de ciclo Otto como ciclo del diésel. El ciclo de funcionamiento de estos motores se completa con cuatro desplazamientos del émbolo o tiempos, es decir, con dos vueltas completas. Este motor se compone por un cilindro, una biela, un cigüeñal, al menos dos válvulas, una bujía y muchos otros componentes que hacen que todo trabaje de forma coordinada.

Aquí se detallan los diferentes tiempos (actividades realizadas durante el ciclo) y sus características.

  • 1-Primer tiempo o admisión: en el primer tiempo una mezcla de gasolina y aire va a entrar en la cámara de combustión del cilindro. El descenso del pistón aspira la mezcla en los motores de encendido provocado o el aire en motores de encendido por compresión.  Para ello el pistón baja del punto superior del cilindro al inferior, mientras que la válvula (o válvulas) de admisión se abre y deja entrar esa mezcla de gasolina y aire al interior del cilindro, para cerrarse posteriormente.
  • 2-Segundo tiempo o compresión: con el pistón en su posición más baja y la cámara de combustión llena de gasolina y aire, la válvula de admisión se cierra y deja la cámara cerrada herméticamente. La inercia del cigüeñal al que está unida la biela del pistón hará que el pistón vuelva a subir y comprima así la mezcla.
  • 3-Tercer tiempo o explosión/expansión: al llegar al final de la carrera superior el gas ha alcanzado la presión máxima. En los motores de encendido provocado o de ciclo Otto salta la chispa en la bujía, provocando la inflamación de la mezcla, mientras que en los motores diésel, se inyecta a través del inyector el combustible muy pulverizado, que se autoinflama por la presión y temperatura existentes en el interior del cilindro. En ambos casos, una vez iniciada la combustión, esta progresa rápidamente incrementando la temperatura y la presión en el interior del cilindro y expandiendo los gases que empujan el pistón. Esta es la única fase en la que se obtiene trabajo. En este tiempo el cigüeñal gira 180º mientras que el árbol de levas gira 90º respectivamente, ambas válvulas se encuentran cerradas y su carrera es descendente.
  • 4 -Cuarto tiempo o escape: en esta fase el pistón empuja, en su movimiento ascendente, los gases de la combustión que salen a través de la válvula de escape que permanece abierta. Al llegar al punto máximo de carrera superior, se cierra la válvula de escape y se abre la de admisión, reiniciándose el ciclo. En este tiempo el cigüeñal gira 180º y el árbol de levas gira 90º.

En el siguiente vídeo de la universidad de La Laguna se ofrece una descripción básica de las máquinas térmicas en referencia a los motores de combustión interna de cuatro tiempos.

Os dejo a continuación algunos vídeos más sobre este tipo de motores.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

 


Los neumáticos en la maquinaria usada en la construcción

$
0
0

Wikimedia

El neumático es el elemento que efectúa la unión elástica entre el vehículo móvil (dúmper, pala cargadora, bulldozer, motoniveladora) y el suelo. Sus funciones son las de transportar la carga, contribuir a la suspensión y amortiguación de la máquina, aportar flotabilidad y permitir el guiado y la tracción de la máquina. Desde finales del siglo XIX en que podemos situar el nacimiento de los primeros neumáticos, se ha pasado en una espectacular evolución a los neumáticos gigantes concebidos para que el transporte de pesadas cargas pueda llevarse a cabo tanto sobre suelos flojos como duros, en las más diversas condiciones.

Os dejo la siguiente presentación de Pedro Zambrana García, que espero os sea útil.

En este otro vídeo podemos ver cómo se fabrican los neumáticos para los equipos pesados.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Utilización de eslingas de cables de acero, cadena y poliéster

$
0
0

eslingaEstrobo o eslinga: Es un cable con dos gazas, una por cada extremo, del mismo o diferente tamaño. Es el elemento intermedio que permite enganchar una carga a un gancho de izado o de tracción. Consiste en una cinta con un ancho o largo específico (varían según su resistencia, los modelos y los fabricantes) cuyos extremos terminan en un lazo (ojo). También puede ser un cable unido por sus dos extremos. En todos los casos sirve para abrazar una pieza y colgarla de un gancho.

Una eslinga puede usarse básicamente con dos finalidades:

  • Elevación: la eslinga se usa con sus extremos en forma de ojales, lo que permite elevar y manejar la carga en diferentes posiciones, con ayuda de una grúa o polipasto.
  • Amarre o trincaje: la eslinga se usará con accesorios de trincaje, permitiendo así la sujeción de cargas.

 

Os paso algunos vídeos de la empresa Cablered Expert, S.L. con consejos de seguridad en la utilización de eslingas.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Instalación de bombas centrífugas

$
0
0

La bomba centrífuga constituye el tipo más frecuentemente utilizado. Puede bombear todo tipo de líquidos, incluso con sólidos en suspensión. Se utilizan en toda clase de bombeos excepto si la carga a vencer es demasiado elevada. Esta clase de bomba se indica para caudales moderados y alturas notables. La bomba puede ser sumergible o estar instalada en seco. En éste último caso, la instalación puede estar en aspiración o en carga.

Son máquinas hidráulicas donde el líquido, al entrar en la cámara por la parte central y en la dirección del eje del rotor, es impulsada por éste y al girar lanzada hacia el exterior por la fuerza centrífuga. El líquido adquiere energía cinética que en el difusor se convierte en un aumento de presión. Transforman, por tanto, un trabajo mecánico en otro de tipo hidráulico, siendo su funcionamiento análogo, pero inverso, a las turbinas hidráulicas.

Los elementos constitutivos de que constan son:

  1. Una tubería de aspiración, que concluye prácticamente en la brida de aspiración.
  2. El impulsor o rodete, formado por una serie de álabes de formas distintas que giran dentro de una carcasa circular. El rodete va unido solidariamente al eje y es la parte móvil de la bomba.
  3. Una tubería de impulsión, donde el líquido adquiere la presión cedida por la energía cinética en la voluta de la bomba.

 

Perspectiva de una bomba centrífuga

Os dejo a continuación un vídeo explicativo de cómo se instala una bomba centrífuga. Espero que os sea de utilidad.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Motor endotérmico rotativo

$
0
0

Motor Wankel en el Deutsches Museum en Múnich (Alemania). Wikipedia

Dentro de los motores de combustión interna rotativos, el motor Wankel, cuya patente data de 1936, se diferencia enormemente de los motores convencionales. Este motor tiene un 40 por ciento menos de piezas y la mitad de volumen y peso de un motor comparable a pistones. Es de diseño simple, en vez de un pistón, de un cilindro y de válvulas mecánicas, un rotor triangular que gira alrededor del excéntrico, hay muy poca vibración y no hay problemas con la disipación de calor, los puntos calientes, o la detonación, que son consideraciones en el motor convencional del intercambio.

En la figura puede observarse el funcionamiento en cuatro fases: (1) admisión de la mezcla, (2) compresión, (3) encendido (por chispa), explosión y expansión y (4) escape. Todas las fases ocurren de forma simultánea.

Motor Wankel

Las ventajas teóricas de estos motores frente a los alternativos son las siguientes:

  • Su distribución uniforme, regular y ausente de fuerzas alternativas facilita un diseño más equilibrado.
  • Su volumen es menor, así como su relación peso/potencia.
  • Ausencia de espacios muertos.
  • Inexistencia de válvulas y menor número de piezas, lo que contribuye a su simplicidad constructiva.
  • Funcionamiento continuo, dando un empuje constante, lo que teóricamente va asociado a un rendimiento más alto.

 

Sin embargo también se pueden anotar algunos inconvenientes que hacen que su empleo sea más bien escaso:

  • Problemas de estanqueidad, para no perturbar las fases del ciclo.
  • Dificultad de conseguir una eficaz refrigeración.
  • Gradientes elevados de temperatura de la zona caliente de explosión y escape (más de 1000ºC) respecto a las otras (unos 150ºC).
  • Baja eficacia en el uso del combustible y necesidad de estar perfectamente sincronizado.

Os dejo una explicación del motor rotativo (en inglés, así practicáis). Espero que os guste.

Aquí podéis ver el motor rotativo del Mazda RX8.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

 

 

 

¿Qué es un caballo de potencia?

$
0
0

http://enciclopedia.us.es/index.php/Caballo_de_vapor

La potencia de un motor se define como el trabajo realizado por unidad de tiempo. Existen diversas unidades para medirla, aunque la aceptada por el sistema internacional de unidades es el vatio (W). Sin embargo, pese a no pertenecer al sistema métrico, se sigue utilizando en muchos países de influencia anglosajona el caballo de potencia, especialmente para referirse a la potencia de los motores, tanto de combustión interna como eléctricos. Su magnitud es similar al caballo de vapor, pero no exactamente equivalente. Sin embargo, a veces hay confusión en estos términos (ver este enlace).

  • El caballo de vapor alemán CV o PS (metric horsepower) se define como el trabajo de 75 kilográmetros por segundo. Equivale a 735.49875 W.
  • El caballo de vapor inglés HP (mechanical horsepower) equivale a 550 pies por libra y por segundo, lo cual corresponde aproximadamente a 1.013849 CV y 745.685 W.

 

El caballo de potencia (o de fuerza) es una unidad que fue propuesta a finales del siglo XVIII por el ingeniero escocés James Watt, quien mejoró, diseñó y construyó máquinas de vapor, además de promover el uso de éstas en variadas aplicaciones. Watt propuso esta unidad para expresar la potencia que podía desarrollar la novedosa máquina de vapor (en su época), con respecto a la potencia que desarrollaban los caballos. Estos animales eran las “máquinas” de trabajo que se usaban ampliamente para mover molinos, levantar cargas, mover carruajes y muchas otras actividades. Luego de varios experimentos y aproximaciones de cómo medir y expresar la potencia de los caballos, James Watt estimó que un caballo podía levantar 330 libras-fuerza de peso a una altura de 100 pies en un minuto.

Os dejo un par de vídeos explicativos que espero os gusten.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Grúa torre de doble vano

$
0
0

Están compuestas por un mástil vertical fijo apoyado sobre una plataforma soporte. Sobre éste mástil se sustenta un brazo horizontal de dos vanos estabilizados por medio de cables atirantados en su parte superior. El vano superior, denominado pluma es el utilizado por el carro de traslación para desplazarse mientras el otro, la contrapluma, sirve de contrapeso. La estructura se compone de tramos en celosía. La pluma gira 360º por medio de una corona circular y por un engranaje movido por motor eléctrico.

Las velocidades de maniobra son de 1 a 2 r.p.m. para el giro y de unos 40 a 50 m/min para el desplazamiento y elevación de la carga. El control de la grúa puede efectuarse desde una cabina de mando situada en la base o en la parte superior de la torre, o bien desde tierra por medio de un mando móvil desplazable.

Os adjunto un vídeo para que veáis el funcionamiento de estas máquinas.

Como curiosidad os dejo un vídeo de la grúa torre más grande del mundo: la Kroll K-10000. Tiene una altura de 120 m y es capaz de levantar 132 t de carga máxima y 91 t a una distancia de 100 m. Puede resistir vientos de hasta 240 km/h. Espero que os guste el vídeo.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

El motor diésel de cuatro tiempos

$
0
0

En 1892, el ingeniero alemán Rudolf Diesel patenta el primer motor de encendido de compresión, construido con éxito en 1897. Desde 1945 el motor diesel rápido, perfeccionado paulatinamente con reducciones en las relaciones peso/potencia e importantes mejoras en los sistemas de inyección, ha desplazado al de gasolina, cuyo uso se reduce a motores ligeros de menos de 5 CV. Existen motores diesel de dos tiempos (llamados de acción simple) y de cuatro tiempos (más habituales). Los primeros presentan un barrido defectuoso, por lo que necesitan mejores sistemas de engrase y refrigeración.

Una primera clasificación de estos motores atiende a su velocidad:

  • Motores de baja velocidad (w<350 r.p.m.): se usa normalmente en instalaciones estacionarias de gran potencia.
  • Motores de media velocidad (w aprox = 350 r.p.m.): su empleo habitual es en generadores de corriente de media y baja potencia.
  • Motores de alta velocidad (w>350 r.p.m.): en máquinas de movimiento de tierras.

 

El motor diesel de cuatro tiempos presenta similitudes al de gasolina. Se pueden establecer las siguientes fases del ciclo:

  1. Admisión: En esta fase entra aire en el cilindro (sin mezcla de combustible) que es succionado por el pistón en su movimiento de descenso.
  2. Compresión: Después de alcanzar el pistón el extremo inferior, y una vez se cierran las válvulas de admisión, el cilindro inicia su ascenso comprimiendo el aire hasta llegar al punto más alto de la carrera. La relación de compresión varía entre 14 y 22.
  3. Encendido, combustión y expansión: La elevación de temperatura (440ºC) que acompaña la compresión permite una combustión espontánea al inyectar el combustible. Con las válvulas cerradas, la expansión del gas obliga al pistón a descender hasta el punto muerto inferior (PMI).
  4. Escape: Al llegar el pistón al PMI las válvulas de expulsión se abren y los gases se expulsan al exterior.

 

 

Imagen1

 

El ciclo real y teórico presentan diferencias:

  • La inyección no coincide exactamente con el punto muerto superior (PMS). Asimismo las válvulas de escape se abren instantes antes de que el pistón alcance el PMI.
  • Aunque en el ciclo teórico la combustión se supone que se produce a volumen constante, en realidad sólo una parte lo hace. El resto de la combustión se realiza a presión constante, de modo que se aproxima al ciclo de Otto.

 

 

Sólo en los motores diesel muy lentos, la combustión se desarrolla aproximándose al ciclo teórico.

Os dejo algunos vídeos donde podréis ver el funcionamiento del ciclo diésel y sus más importantes características. Espero que os gusten.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.


Turbocompresores

$
0
0

Turbocompresor (corte longitudinal). En rojo, estátor de fundición y rotor de la turbina. En azul estátor de aluminio y rotor del compresor. Wikipedia

La incorporación de la sobrealimentación a motores de combustión interna permite aumentar la potencia del motor evitando la necesidad de incrementar sus dimensiones. Esta sobrealimentación puede conseguir hasta un 40% más de potencia que un motor igual no sobrealimentado. La solución pasa por incrementar el volumen de aire que accede a la cámara de combustión en motores atmosféricos. Los turbocompresores son, por tanto, turbo-máquinas que comprimen el aire, estando compuestos por una turbina solidaria a un eje que impulsa el compresor de aire de admisión en su otro extremo. Este motor funciona con la energía que normalmente se pierde en los gases de escape del motor. Se pueden clasificar en turbocompresores de geometría fija o de geometría variable. Estos sistemas de sobrealimentación ha sido posible gracias a la mejora de los materiales. Cuanto mayor sea la eficiencia adiabática, mejor será, en principio, el rendimiento final del sistema.

Los turbos de geometría variable disponen de un sistema de aletas o álabes que dependiendo de la presión de los gases de escape se sitúan en una u otra posición, para aumentar la velocidad del flujo que debe pasar a través de la turbina y mantener a la turbina girando a su velocidad óptima a cualquier régimen del motor.

En los motores diésel el turbocompresor está más difundido debido a que un motor diésel trabaja con exceso de aire al no haber mariposa, por una parte; esto significa que a igual cilindrada unitaria e igual régimen motor (rpm) entra mucho más aire en un cilindro diésel.

Turbo de geometría variable. Fuente: http://www.motorpasion.com/

A continuación os dejo un vídeo explicativo que explica el funcionamiento de esta máquina.

En el siguiente vídeo de la universidad de La Laguna se explica el funcionamiento de un sistema turbocompresor.

En este vídeo se explica el turbo de geometría variable.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

El diferencial

$
0
0

Vista de un diferencial. Wikipedia

Un diferencial es el elemento mecánico que permite compensar las diferencias en la velocidad de giro de las ruedas exteriores e interiores de un vehículo, según éste se encuentre tomando una curva hacia un lado o hacia el otro. Permite, por tanto, la transmisión de par a distintas revoluciones a ambas ruedas simultáneamente. Sus inventores fueron los chinos, que hace ya 3.000 años ya utilizaban un mecanismo diferencial en sus carros. Gracias al diferencial la conducción es más predecible, los neumáticos se gastan menos y no hay tensiones extra en chasis y ejes, así que, en definitiva, tenemos una conducción más segura.

El diferencial consta de engranajes dispuestos en forma de “U” en el eje. Cuando ambas ruedas recorren el mismo camino, por ir el vehículo en línea recta, el engranaje se mantiene en situación neutra. Sin embargo, en una curva los engranajes se desplazan ligeramente, compensando con ello las diferentes velocidades de giro de las ruedas.

http://www.tecnerife.com

 

 

Os paso a continuación varios vídeos explicativos sobre este elemento (algunos en inglés). Espero que os sean útiles.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

 

 

El cigüeñal

$
0
0

El cigüeñal  es un árbol de transmisión, con codos y contrapesos presente en ciertas máquinas que, aplicando el principio del mecanismo de biela – manivela, transforma el movimiento rectilíneo alternativo en circular uniforme y viceversa. En realidad consiste en un conjunto de manivelas. Cada manivela consta de una parte llamada muñequilla y dos brazos que acaban en el eje giratorio del cigüeñal. Cada muñequilla se une una biela, la cual a su vez está unida por el otro extremo a un pistón. En los motores de automóviles el extremo de la biela opuesta al bulón del pistón (cabeza de biela) conecta con la muñequilla, la cual junto con la fuerza ejercida por el pistón sobre el otro extremo (pie de biela) genera el par motor instantáneo. El cigueñal va sujeto en los apoyos, siendo el eje que une los apoyos el eje del motor.

Os dejo a continuación un vídeo explicativo que espero os guste.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Sistemas de distribución

$
0
0

Sistema de distribución OHV, www.aficionadosalamecanica.net

La distribución se puede definir como el conjunto de elementos necesarios para regular la entrada y la salida de gases del cilindro de los motores de cuatro tiempos. Generalmente se trata de un conjunto de piezas que, accionadas por el mismo motor, abren y cierran las válvulas de entrada y salida de gases.

Los sistemas de distribución se pueden clasificar dependiendo de la localización del árbol de levas. Hasta los años 80 los motores estaban configurados con el árbol de levas situado en el bloque motor. Actualmente prácticamente todos los motores tienen el árbol de levas montado en la culata.

El sistema consta de una serie de piezas que pueden variar dependiendo del motor. Generalmente podemos encontrar:

  • Engranaje de mando, cadena o correa: Se encuentra conectado al cigüeñal. Recibe el movimiento de este y lo transmite al árbol de levas. Los engranajes de mando solo se encuentra en los vehículos antiguos o con grandes motores porque son menos eficientes que las cadenas y correas porque pierden energía en forma de calor.
  • Árbol de levas: Es un eje con protuberancias, llamadas levas, que al girar activan en su momento justo el taqué. Debido a las condiciones que debe soportar lleva un tratamiento térmico especial llamado cementación.
  • Taqué o botador: Es un empujador que, movido por el árbol de levas, empuja la válvula. Pueden ser mecánicos (comunes o con un regulador de la luz de válvula) o hidráulicos (regulan la luz de válvula automáticamente).
  • Válvula: Es la parte fundamental del sistema. Accionada por el botador, se abre o cierra permitiendo el paso de los gases al cilindro.

 

Os dejo varios vídeos explicativos. El primero esde la Universidad de La Laguna y en él se explica el funcionamiento del sistema de distribución de un motor de combustión interna.

 

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

 

Turbina Francis

$
0
0

turbin4La turbina Francis, desarrollada por James B. Francis, es una turbomáquina motora a reacción y de flujo mixto. Son turbinas hidráulicas que se pueden diseñar para un amplio rango de saltos y caudales,  capaces de operar en desniveles que van de los dos metros hasta varios cientos de metros. Esto, junto con su alta eficiencia, ha hecho que este tipo de turbina sea el más usado en el mundo, principalmente para la producción de energía eléctrica en centrales hidroeléctricas.  Son muy costosas de diseñar, fabricar e instalar, pero pueden funcionar durante décadas.

Estas turbinas presentan un diseño hidrodinámico que garantiza un alto rendimiento debido a las bajas pérdidas hidráulicas. Son robustas, con bajo costo de mantenimiento. Sin embargo, no se recomienda su instalación con alturas de agua mayores de 800 m ni cuando existen grandes variaciones de caudal. Asimismo es muy importante controlar la cavitación.

Espiral de entrada de una turbina Francis, Presa Grand Coulee.

Las partes de una turbina Francis son las siguientes:

  • Cámara espiral: distribuye uniformemente el fluido en la entrada del rodete. La forma en espiral o caracol se debe a que la velocidad media del fluido debe permanecer constante en cada punto de la misma. La sección transversal  puede ser rectangular o circular, siendo esta última la más utilizada.
  • Predistribuidor:  formado por álabes fijos que tienen una función netamente estructural, para mantener la estructura de la caja espiral y conferirle rigidez transversal, que además poseen una forma hidrodinámica para minimizar las pérdidas hidráulicas.
  • Distribuidor: constituido por álabes móviles directores, cuya misión es dirigir convenientemente el agua hacia los álabes del rodete (fijos) y regular el caudal admitido, modificando de esta forma la potencia de la turbina de manera que se ajuste en lo posible a las variaciones de carga de la red eléctrica, a la vez de direccionar el fluido para mejorar el rendimiento de la máquina. Este recibe el nombre de distribuidor Fink.
  • Rotor o rodete: es el corazón de la turbina, pues aquí tiene lugar el intercambio de energía entre la máquina y el fluido. En forma general, la energía del fluido al momento de pasar por el rodete es una suma de energía cinéticaenergía de presión y energía potencial. La turbina convierte esta energía en energía mecánica que se manifiesta en el giro del rodete. El rodete a su vez transmite esta energía por medio de un eje a un generador eléctrico dónde se realiza la conversión final en energía eléctrica. El rotor puede tener diversas formas dependiendo del número específico de revoluciones para el cual esté diseñada la máquina, que a su vez depende del salto hidráulico y del caudal de diseño.
  • Tubo de aspiración: es la salida de la turbina. Su función es darle continuidad al flujo y recuperar el salto perdido en las instalaciones que están por encima del nivel de agua a la salida. En general se construye en forma de difusor, para generar un efecto de aspiración, el cual recupera parte de la energía que no fuera entregada al rotor en su ausencia.

 

Las turbinas Francis se pueden clasificar en función de la velocidad específica del rotor y de las características del salto:

  • Turbina Francis lenta: para saltos de gran altura, alrededor de 200 m o más
  • Turbina Francis normal: indicada en saltos de altura media, entre 200 y 20 m
  • Turbina Francis rápidas y extrarrápidas: apropiadas para saltos de pequeña altura, inferiores a 20 m

 

A continuación os paso un par de vídeos explicativos que espero os sean de utilidad:

Os paso un vídeo de una Turbina Francis de la Central Hidroeléctrica de la Presa Susqueda en funcionamiento produciendo 27,5 MW por caída hidráulica de 162 m.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Viewing all 155 articles
Browse latest View live